Recommending Education Materials for Diabetic Questions Using Information Retrieval Approaches
نویسندگان
چکیده
BACKGROUND Self-management is crucial to diabetes care and providing expert-vetted content for answering patients' questions is crucial in facilitating patient self-management. OBJECTIVE The aim is to investigate the use of information retrieval techniques in recommending patient education materials for diabetic questions of patients. METHODS We compared two retrieval algorithms, one based on Latent Dirichlet Allocation topic modeling (topic modeling-based model) and one based on semantic group (semantic group-based model), with the baseline retrieval models, vector space model (VSM), in recommending diabetic patient education materials to diabetic questions posted on the TuDiabetes forum. The evaluation was based on a gold standard dataset consisting of 50 randomly selected diabetic questions where the relevancy of diabetic education materials to the questions was manually assigned by two experts. The performance was assessed using precision of top-ranked documents. RESULTS We retrieved 7510 diabetic questions on the forum and 144 diabetic patient educational materials from the patient education database at Mayo Clinic. The mapping rate of words in each corpus mapped to the Unified Medical Language System (UMLS) was significantly different (P<.001). The topic modeling-based model outperformed the other retrieval algorithms. For example, for the top-retrieved document, the precision of the topic modeling-based, semantic group-based, and VSM models was 67.0%, 62.8%, and 54.3%, respectively. CONCLUSIONS This study demonstrated that topic modeling can mitigate the vocabulary difference and it achieved the best performance in recommending education materials for answering patients' questions. One direction for future work is to assess the generalizability of our findings and to extend our study to other disease areas, other patient education material resources, and online forums.
منابع مشابه
Boosting Passage Retrieval through Reuse in Question Answering
Question Answering (QA) is an emerging important field in Information Retrieval. In a QA system the archive of previous questions asked from the system makes a collection full of useful factual nuggets. This paper makes an initial attempt to investigate the reuse of facts contained in the archive of previous questions to help and gain performance in answering future related factoid questions. I...
متن کاملThe Feasibility Study of Launching Book Recommendation System on the Basis of a Lending and Selling System of e-Books and Digital Taktab
Background:The study was conducted to achieve three axes of goals (users, publishers and the system) by way of objectives related to: A) Users - measuring the level of their satisfaction with Taktab system and also use of various methods of data retrieval; B) Publishers - Measuring the level of their satisfaction with Taktab system and also their expectations of the existence of a recommending...
متن کاملRUC @ INEX 2011 Data-Centric Track
We report our experiment results on the INEX 2011 Data-Centric Track. We participated in both the ad hoc and faceted search tasks. On the ad hoc search task, we employ language modeling approaches to do structured object retrieval, trying to capture both the structure in data and structure in query and unify the structured and unstructured information retrieval in a general framework. However, ...
متن کاملQEA: A New Systematic and Comprehensive Classification of Query Expansion Approaches
A major problem in information retrieval is the difficulty to define the information needs of user and on the other hand, when user offers your query there is a vast amount of information to retrieval. Different methods , therefore, have been suggested for query expansion which concerned with reconfiguring of query by increasing efficiency and improving the criterion accuracy in the information...
متن کاملQuestion Retrieval in Community Question Answering Enhanced by Tags Information in a Deep Neural Network Framework
Community Question Answering (CQA) platforms need to be easy and fast in question or answer exploration. It is common to use tags to categorize items in these platforms, and create taxonomies that assist exploration, indexing and searching. The focus of this thesis lies in recommending similar questions (Question Retrieval) by simultaneously deciding whether the contexts of two questions are si...
متن کامل